Atanas G. Stefanov

Professor

                                                                               


Department of Mathematics
University of Kansas

  • Office:  Snow Hall, 514
  • Phone: 785-864-3009
  • E-mailstefanov at ku.edu




  • TEACHING for  Fall  2018

    academic calendar

    Math 221   (Applied Differential Equations - Honors)

    Math 647 (Applied Partial Differential Equations)


    Google Scholar research profile:


    Selected publications:
    1. S. Hakkaev, M. Stanislavova,  A. Stefanov, Spectral stability for  classical periodic waves  of the Ostrovsky and short pulse models,  
        Stud. Appl. Math.,  139, (2017), p. 405--433.
    2. A. Comech, T.V. Phan, A. Stefanov,  Asymptotic stability of solitary waves in generalized Gross - Neveu model,   Ann. Inst. Henri Poincare Anal. Non Lineaire,  34 (2017), no. 1, p. 157--196. 
    3. M. Stanislavova, A. Stefanov,  On the spectral problem $L u=\lambda u'$ and applications,  Comm. Math. Phys. 343 (2016), no. 2, p. 361--391. 
    4. M. Stanislavova, A. Stefanov,  Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case, Physica D262, (2013), p. 1--13. 
    5. A. Stefanov, P. G. Kevrekidis, Traveling waves for monomer chains with pre-compression,  Nonlinearity26,
      (2013), p.  539--564.
    6. M. Stanislavova, A. Stefanov,  Linear stability analysis for traveling waves of second order in time PDE's, Nonlinearity25, (2012) p. 2625--2654.
    7. A. Stefanov, P. Kevrekidis,  On the existence of solitary traveling waves for generalized Hertzian chains,  Journal of Nonlinear Science, 22, no. 3 (2012), p. 327--349.
    8. V. Georgiev, A. Stefanov, M. Tarulli,  Smoothing - Strichartz estimates for the  Schroedinger equation with small magnetic
      potential, Disc. Contin. Dyn. Syst. - A  17, (2007),  p. 771--786.
    9. A. Stefanov,  Strichartz estimates for the magnetic Schr\"odinger equation,  Adv. Math. 210, (2007)  p. 246--303. 
    10. A. Stefanov, P. Kevrekidis,  Asymptotic behavior of small solutions for the discrete nonlinear Schroedinger and Klein-Gordon
      equations,  Nonlinearity  18 (2005), p. 1841--1857.

    Grants and Awards


    1. 2015 KU Scholarly Achievement Award
    2. NSF award # 1614734(09/2016-08/2019): ``Stability of Solitary Waves in Dynamical Systems''
    3. NSF award #1313107 (07/2013-06/2016): ``Stability of waves in discrete and continuous dynamical systems''
    4. NSF award #0908802 (09/2009-08/2013): ``Stability in Discrete and Continuous Dynamical Systems''
    5. NSF award #0701802 (06/2007-05/2010)  : ``Harmonic Analysis and Nonlinear Dispersive Equations''
    6. NSF award #0300511 (05/2003 - 04/2007):  Harmonic analysis and applications to geometric PDE's

    CV




    Various




    1. Conference: Mathematics of Wave Phenomena
    2. Conference: Stability of Solitary Waves,
    3. 8th Kansas Math competition
    4. Why Math - check out this article by Chronicle of Higher education.
    5.  2004 Putnam competition - KU team was 28th in US/Canada!!!
    6. 3rd Kansas Math competition
    7. Conference ``Evolution Equations: Randomness and Asymptotics'', Bad Herrenhalb, Baden-Wurttemberg.
    8.   Kansas Math Competition


    Fall  2018 Schedule

    Monday
    Tuesday
    Wednesday
    Thursday
    Friday
    9:30-10:30



     



    10:00-11:00


     



    11:00-12:15
     
    Math 647
    301, Snow Hall
     
     Math 647
    301, Snow Hall
     
    12:00-1:00






    1:00-2:15

    Math 221
    302, Snow Hall
     
    Math 221
    302, Snow Hall

    2:00-3:00
     

     
     


     
    3:00-4:00
     
     
     
     

    Analysis seminar,
    306 Snow
    (3:00-4:00)

     
     
    4:00-5:00



    Colloquium,
    306 Snow




     


    Previous Teaching


    Fall 2017: Math 320 (Ordinary ODE); Math 810 - Real Analysis and Measure Theory

    Spring 2017: Math 960 - Functional Analysis

    Fall 2015: Math 765 (Mathematical Analysis I)

    Spring 2015: Math 800 (Complex Analysis I)

    Fall 2014:  Math 810 (Real Analysis and Measure Theory I), Math 221 (Applied ODE - honors)

    Spring 2014: Math 122(Calculus II)

    Fall 2013:  Math 960 (Functional Analysis), Math 765(Mathematical Analysis I) 
    Spring 2013: Math 766 (
    Mathematical Analysis II)
    Fall 2012: Math 291(Elementary Linear Algebra- Honors); Math 220 (Elementary ODE)
    Spring 2012: Math 800 - Complex Analysis I
    Fall 2011: Math 290 (Elementary Linear Algebra); Math 950 (Advanced  P. D. E.)
    Spring 2011: Math 766 (Mathematical Analysis II)Math 115 (Applied Calculus - I)
    Fall 2010: Math 765 (Mathematical Analysis I), Math 220 (Elementary ODE)
    Spring 2010:
    Math 647 (Applied PDE)
    Fall 2009: Math 220 (Elementary ODE), Math 950, Advanced PDE
    Fall 2008: Math 141 (Honors Calculus - I)
    Spring 2008: Math 647 (Applied PDE)
    Fall 2007:  Math 765 (Intro to theory of functions), Math 220 (Elementary ODE)
    Spring 2007: Math 220 (Elementary ODE),   Math 996 (Harmonic analysis and PDE)
    Fall 2006: Math 116 (Applied Calculus - II)
    Spring 2006:  Math 220 (Elementary ODE), Math 960 (Functional Analysis)
    Fall 2005: Math 290 (Elementary Linear Algebra), Math 320 (Elementary ODE)
    Spring 2005: Math 648 (Calculus of Variations), Math 116 (Applied Calculus - II)
    Fall 2004: Math 116 (Applied Calculus - II), Math 960 (Functional Analysis)